Kubernetes中弹性伸缩最主要的就是使用HPA(Horizontal Pod Autoscaling)和CA(Cluster AutoScaling)两种弹性伸缩策略,HPA负责工作负载弹性伸缩,也就是应用层面的弹性伸缩,CA负责节点弹性伸缩,也就是资源层面的弹性伸缩。
通常情况下,两者需要配合使用,因为HPA需要集群有足够的资源才能扩容成功,当集群资源不够时需要CA扩容节点,使得集群有足够资源;而当HPA缩容后集群会有大量空余资源,这时需要CA缩容节点释放资源,才不至于造成浪费。
本文先演示HPA弹性伸缩,基于CPU和内存使用率实现POD实例的弹性。
1. 准备工作
本次实验基于EKS集群,需要集群安装metrics-server插件,该插件能够收集包括Pod、Node、容器、Service等主要Kubernetes核心资源的度量数据,并通过标准的 Kubernetes API 把数据暴露出来。
2. 工作原理
- 在负载中指定多个POD副本,metrics-server可收集到这些POD使用的CPU与内存度量数据;
- 创建一个HorizontalPodAutoscaler对象,在对象的定义中指定CPU与内存策略,比如超过CPU 50%时扩容POD;
- 模拟CPU和内存增加场景,使得POD加大CPU和内存使用量,触发HPA策略生效。
**扩缩容决策算法:**HPA controller根据当前指标和期望指标来计算缩放比例,计算公式如下:
desiredReplicas = ceil[currentReplicas * ( currentMetricValue / desiredMetricValue )]
-
参数1:currentMetricValue 表示当前的值
-
参数2:desiredMetricValue 表示期望的值
-
参数3:currentReplicas 表示当前的POD副本数
-
参数4:desiredReplicas 表示希望扩容后的POD副本数
比如:有一个负载,创建了一个POD,它当前CPU利用率是20%,我们期望它的利用率不要超过30%,即desiredMetricValue = 30%;当它业务激增到60%的时候,currentMetricValue = 60%;
那么这时,期望的POD数 = 1 * (60/30) = 2,HPA控制器就会启动扩容增加一个POD实例;这个POD启动后它能够分担业务流量,两个POD的CPU降低,不再扩容;如果这时两个POD的流量继续增加一倍,业务压力导致CPU继续飙升一倍,则期望的POD数继续翻倍为4;业务压力下降时,POD随之缩容。
在实际过程中,可能会遇到实例数值反复伸缩,导致集群震荡。为了保证稳定性,HPA controller从以下几个方面进行优化::
-
冷却时间:在1.11版本以及之前的版本,社区引入了horizontal-pod-autoscaler-downscale-stabilization-window和horizontal-pod-autoScaler-upscale-stabilization-window这两个启动参数代表缩容冷却时间和扩容冷却时间,这样保证在冷却时间内,跳过扩缩容。1.14版本之后引入延迟队列,保存一段时间内每一次检测的决策建议,然后根据当前所有有效的决策建议来进行决策,从而保证期望的副本数尽量小的发生变更,保证稳定性。如,设置downscaleWindow
的值为1m表示1分钟内不缩容,upscaleWindow
的值为1m表示1分钟内不扩容。
-
忍受度:可以看成一个缓冲区,当实例变化范围在忍受范围之内的话,保持原有的实例数不变。
比如:CPU缓冲区为30%-50%,表示当前CPU利用率在30%~50%之间时不会扩容缩容,只有低于30%时才会缩容,高于50%时才会扩容。
3. 测试验证
分别创建CPU和内存策略演示。
3.1 创建工作负载
基于Nginx镜像创建无状态工作负载,副本数为1。负载01-nginx-demo.yaml
内容如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
kind: Deployment
apiVersion: apps/v1
metadata:
name: nginx
spec:
replicas: 1
selector:
matchLabels:
app: hpa-nginx
template:
metadata:
labels:
app: hpa-nginx
spec:
containers:
- name: container-1
image: 'xxx.xxx.xxx.com:80/public/nginx:x86-1.20.1'
resources:
limits: # limits与requests建议取值保持一致,避免扩缩容过程中出现震荡
cpu: 500m
memory: 200Mi
requests:
cpu: 500m
memory: 200Mi
|
基于yaml资源文件创建负载deployment。
1
2
3
4
5
6
7
8
|
➜ kubectl apply -f deployment.yaml
deployment.apps/nginx configured
➜ kubectl get deploy
NAME READY UP-TO-DATE AVAILABLE AGE
nginx 1/1 1 1 3m5s
➜ kubectl get po -l app=hpa-nginx -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
nginx-5dbc9b8ddc-7wbc7 1/1 Running 0 2m6s 12.11.0.52 10.247.154.39 <none> <none>
|
这里可见一个名为nginx-5dbc9b8ddc-7wbc7
的POD已经在running
了,其获取到一个集群内部IP12.11.0.52
。接下来创建一个HPA策略,并逐步增加该POD的CPU负载触发HPA弹性。
3.2 创建CPU相关HPA策略
创建HPA策略,如下所示。
hpa-demo.yaml:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
apiVersion: autoscaling/v2beta1
kind: HorizontalPodAutoscaler
metadata:
name: hpa-example
annotations:
extendedhpa.metrics: '[{"type":"Resource","name":"cpu","targetType":"Utilization","targetRange":{"low":"40","high":"55"}}]'
extendedhpa.option: '{"downscaleWindow":"1m","upscaleWindow":"1m"}'
name: hpa-example
namespace: default
spec:
scaleTargetRef:
kind: Deployment
name: nginx
apiVersion: apps/v1
minReplicas: 1
maxReplicas: 100
metrics:
- type: Resource
resource:
name: cpu
targetAverageUtilization: 50
|
该策略关联了名为nginx
的Deployment,期望CPU使用率为50%
: targetAverageUtilization 为50。指明了最大副本数maxReplicas
为100,最小副本数为minReplicas
为1。
另外有两条注解annotations
,一条是CPU的阈值范围,最低40,最高55,表示CPU使用率在40%到55%之间时,不会扩缩容,防止小幅度波动造成影响。另一条是扩缩容时间窗,表示策略成功触发后,在缩容/扩容冷却时间内,不会再次触发缩容/扩容,以防止短期波动造成影响。
如果这条HPA策略生效了,那什么时候扩容缩容呢?根据上面的公式:desiredReplicas = ceil[currentReplicas * ( currentMetricValue / desiredMetricValue )]
可知:
1)只有当CPU利用率超过55%的时候,会扩容;只有当CPU利用率低于40%的时候会缩容;
2)如果POD当前CPU利用率为70%时,根据上面的公式计算期望的POD数 =ceil[ 1 x(70/50) ] = ceil[1.4],向下取整为1,不扩容,当CPU超过75%时,期望的POD数 = ceil [1 x (75/50)] = 1.5,向上取整为2,扩容一个POD。当POD的CPU利用率低于40%会考虑缩容,如CPU利用率为20%,根据上面的公式计算期望的POD数 = ceil[ 1 x (20/50) ] = ceil[0.4] < 1,会缩容一个POD。
3)扩容缩容后的1分钟内不会再次扩容缩容,防止POD数频繁变化,引起震荡。
创建HPA策略。
1
2
3
4
5
6
7
8
|
➜ kubectl apply -f hpa-demo.yaml
horizontalpodautoscaler.autoscaling/hpa-example configured
➜ kubectl get hpa
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
hpa-example Deployment/hpa-example <unknown>/50% 1 100 0 5s
➜ kubectl get hpa
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
hpa-example Deployment/hpa-example 0%/50% 1 100 1 44s
|
HPA策略创建成功后,短暂时刻内获取不到指标,显示的TARGETS为unknown
,片刻后数字变为0
。 也可通过kubectl top
命令检查Node与POD指标是否能正常获取:
1
2
3
4
5
6
7
8
9
|
➜ kubectl top node #检查Node节点指标
NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%
10.247.154.106 1383m 35% 4644Mi 80%
10.247.154.147 1240m 31% 4232Mi 73%
10.247.154.161 1184m 30% 3275Mi 56%
10.247.154.39 1348m 34% 3268Mi 56%
➜ kubectl top pod -l app=hpa-example #检查POD指标
NAME CPU(cores) MEMORY(bytes)
nginx-5dbc9b8ddc-7wbc7 0m 3Mi
|
可见当前的POD - nginx-5dbc9b8ddc-7wbc7的CPU利用率为0个M,接下来进入POD内部,模拟增加CPU负荷来触发HPA。
3.3 增加POD的CPU负载触发HPA弹性
下面命令会创建 CPU 负荷,方法是通过压缩随机数据并将结果发送到 /dev/null:
1
|
cat /dev/urandom | gzip -9 > /dev/null
|
如果想要更大的负荷,或者系统有多个核,那么只需要对数据进行压缩和解压就行了,像这样:
1
|
cat /dev/urandom | gzip -9 | gzip -d | gzip -9 | gzip -d > /dev/null
|
可按下 CTRL+C 来终止上面的进程。
我们进入单个POD nginx-5dbc9b8ddc-7wbc
里,执行上面的命令,模拟CPU负载增加,触发HPA控制器扩容POD。同时观察hpa扩容情况,很快扩容出一个POD nginx-5dbc9b8ddc-qbmk9
了。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
➜ kubectl get hpa hpa-example --watch #观察hpa控制器扩缩容动作
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
hpa-example Deployment/nginx 0%/50% 1 100 1 49d
hpa-example Deployment/nginx 99%/50% 1 100 1 49d
hpa-example Deployment/nginx 100%/50% 1 100 1 49d
hpa-example Deployment/nginx 100%/50% 1 100 2 49d
hpa-example Deployment/nginx 50%/50% 1 100 2 49d
hpa-example Deployment/nginx 49%/50% 1 100 2 49d
hpa-example Deployment/nginx 50%/50% 1 100 2 49d
➜ kubectl get po -l app=hpa-nginx #获取负载pod情况
NAME READY STATUS RESTARTS AGE
nginx-5dbc9b8ddc-7wbc7 1/1 Running 0 3h13m
nginx-5dbc9b8ddc-qbmk9 1/1 Running 0 95s
➜ kubectl top po -l app=hpa-nginx #获取负载pod的指标
NAME CPU(cores) MEMORY(bytes)
nginx-5dbc9b8ddc-7wbc7 501m 5Mi
nginx-5dbc9b8ddc-qbmk9 0m 3Mi
|
由于这里只是进入到第一个POD里模拟CPU负载增加,所以只有第一个POD的CPU增加,第二个并没有增加,如果这时终止CPU负载增加命令后,1分钟后会看到第二个POD会被缩容掉。
1
2
3
4
5
6
7
8
9
10
11
12
13
|
➜ kubectl get hpa hpa-example --watch
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
hpa-example Deployment/nginx 0%/50% 1 100 1 49d
hpa-example Deployment/nginx 99%/50% 1 100 1 49d
hpa-example Deployment/nginx 100%/50% 1 100 1 49d
hpa-example Deployment/nginx 100%/50% 1 100 2 49d
hpa-example Deployment/nginx 50%/50% 1 100 2 49d
hpa-example Deployment/nginx 49%/50% 1 100 2 49d
hpa-example Deployment/nginx 50%/50% 1 100 2 49d
hpa-example Deployment/nginx 50%/50% 1 100 2 49d
hpa-example Deployment/nginx 0%/50% 1 100 2 49d
hpa-example Deployment/nginx 0%/50% 1 100 2 49d
hpa-example Deployment/nginx 0%/50% 1 100 1 49d
|
3.4 增加POD的内存负载触发HPA弹性
内存指标跟CPU负载类似,在yaml中添加mem字段即可,hpa-demo.yaml如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
apiVersion: autoscaling/v2beta1
kind: HorizontalPodAutoscaler
metadata:
name: hpa-example
annotations:
extendedhpa.metrics: '[{"type":"Resource","name":"cpu","targetType":"Utilization","targetRange":{"low":"40","high":"55"}},{"type":"Resource","name":"memory","targetType":"Utilization","targetRange":{"low":"40","high":"55"}}]'
extendedhpa.option: '{"downscaleWindow":"1m","upscaleWindow":"1m"}'
name: hpa-example
namespace: default
spec:
scaleTargetRef:
kind: Deployment
name: nginx
apiVersion: apps/v1
minReplicas: 1
maxReplicas: 100
metrics:
- type: Resource
resource:
name: cpu
targetAverageUtilization: 50
- type: Resource
resource:
name: memory
targetAverageUtilization: 50
|
上面的声明指定HPA策略为:CPU在40%-55%之间不做扩缩容,内存在40%-55%之间不扩缩容,超出阈值时,根据计算公式desiredReplicas = ceil[currentReplicas * ( currentMetricValue / desiredMetricValue )],扩容POD或者缩容POD。
更新该HPA策略。
1
|
➜ kubectl apply -f hpa-demo.yaml
|
模拟内存占用触发HPA策略。内存的模拟有几种方式:
1)常用的方法为通过mount命名将RAMFS文件系统挂载到一个目录,这个文件系统是内存型文件系统,通过dd命令往挂载目录里写大文件就会增加内存使用率。如:
1
2
3
|
mkdir z
mount -t ramfs ramfs z/
dd if=/dev/zero of=z/file bs=1M count=128 #使用 dd 在该目录下创建一个 128M 的文件
|
2)通过stress
工具和 lookbusy
工具实现精准、可控和易用的控制。
如:
1
2
3
4
5
6
7
8
9
10
11
|
stress --cpu 2 # 产生 2 个工作进程对 CPU 施加压力,也就是将会占用两个 CPU 核心
stress --vm 1 --vm-bytes 128M --vm-hang 0 # 产生 1 个工作进程,占用 128MB 内存并保持
stress --io 1 # 产生 1 个工作进程对 IO 施加压力
lookbusy -c 50 # 占用所有 CPU 核心各 50%
lookbusy -c 50 -n 2 # 占用两个 CPU 核心各 50%
lookbusy -c 50-80 -r curve # 占用所有 CPU 核心在 50%-80% 左右浮动
lookbusy -c 0 -m 128MB -M 1000 # 每 1000 毫秒,循环释放并分配 128MB 内存
lookbusy -c 0 -d 1GB -b 1MB -D 10 # 每 10 毫秒,循环进行 1MB 磁盘写入,临时文件不超过 1GB
#以上命令的参数均可结合使用,同时对系统多个维度施加压力。
|
这两种方法都可以单纯模拟内存增加,但是方法1需要在容器内部mount volume,需修改docker启动方式时加上--privileged
,方法2又需要在容器镜像中安装stress和lookbusy工具,比较麻烦不单独演示。
3.5 暴露服务并循环访问服务触发HPA
给pod加上一个service,在集群内部通过service作为前端接入分流到POD上。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
apiVersion: v1
kind: Service
metadata:
name: nginx-svc
labels:
app: nginx-svc
spec:
ports:
- port: 8080
targetPort: 80
protocol: TCP
name: http
- port: 443
protocol: TCP
name: https
selector:
app: hpa-nginx #这里与上面的pod的labels要一致
|
创建并查询服务:
1
2
3
4
5
6
7
8
9
10
|
➜ kubectl apply -f service.yaml
service/nginx-svc created
➜ kubectl get po -l app=hpa-nginx -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
nginx-58c7b6bf67-fs6nn 1/1 Running 0 13m 12.11.0.121 10.247.154.161 <none> <none>
➜ kubectl get svc -l app=hpa-nginx -o wide
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR
nginx-svc ClusterIP 12.12.232.122 <none> 8080/TCP,443/TCP 12h app=hpa-nginx
|
在集群节点上模拟循环访问该service触发HPA扩容。
1
|
➜ while true;do wget -q -O- http://12.12.232.122:8080; done
|
由于模拟过程中CPU利用率一直不会冲高很多,所以我们将HPA策略中的target阈值调整一下,改为最低20%,最高30%,期望值为25%,改完再观察HPA伸缩过程:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
➜ kubectl get hpa hpa-example --watch
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
hpa-example Deployment/nginx 2%/49%, 0%/50% 1 100 1 49d
hpa-example Deployment/nginx 2%/49%, 0%/50% 1 100 1 49d
hpa-example Deployment/nginx 1%/49%, <unknown>/50% 1 100 1 49d
hpa-example Deployment/nginx 1%/49%, 0%/50% 1 100 1 49d
hpa-example Deployment/nginx 1%/49%, 0%/50% 1 100 1 49d
hpa-example Deployment/nginx 1%/49%, 54%/50% 1 100 1 49d
hpa-example Deployment/nginx 1%/49%, 0%/50% 1 100 1 49d
hpa-example Deployment/nginx 1%/49%, 0%/25% 1 100 1 49d
hpa-example Deployment/nginx 1%/49%, 36%/25% 1 100 1 49d
hpa-example Deployment/nginx 1%/49%, 36%/25% 1 100 1 49d
hpa-example Deployment/nginx 0%/49%, 30%/25% 1 100 2 49d
hpa-example Deployment/nginx 1%/49%, 16%/25% 1 100 2 49d
hpa-example Deployment/nginx 1%/49%, 22%/25% 1 100 2 49d
hpa-example Deployment/nginx 1%/49%, 19%/25% 1 100 2 49d
hpa-example Deployment/nginx 1%/49%, 24%/25% 1 100 2 49d
hpa-example Deployment/nginx 1%/49%, 16%/25% 1 100 2 49d
hpa-example Deployment/nginx 1%/49%, 20%/25% 1 100 2 49d
|
可见一会儿pod副本从1变为2,如果停止循环访问服务,约1分钟后POD副本数将为1。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
kubectl get hpa hpa-example --watch
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
hpa-example Deployment/nginx 2%/49%, 0%/50% 1 100 1 49d
hpa-example Deployment/nginx 2%/49%, 0%/50% 1 100 1 49d
hpa-example Deployment/nginx 1%/49%, <unknown>/50% 1 100 1 49d
hpa-example Deployment/nginx 1%/49%, 0%/50% 1 100 1 49d
hpa-example Deployment/nginx 1%/49%, 0%/50% 1 100 1 49d
hpa-example Deployment/nginx 1%/49%, 54%/50% 1 100 1 49d
hpa-example Deployment/nginx 1%/49%, 0%/50% 1 100 1 49d
hpa-example Deployment/nginx 1%/49%, 0%/25% 1 100 1 49d
hpa-example Deployment/nginx 1%/49%, 36%/25% 1 100 1 49d
hpa-example Deployment/nginx 1%/49%, 36%/25% 1 100 1 49d
hpa-example Deployment/nginx 0%/49%, 30%/25% 1 100 2 49d
hpa-example Deployment/nginx 1%/49%, 16%/25% 1 100 2 49d
hpa-example Deployment/nginx 1%/49%, 22%/25% 1 100 2 49d
hpa-example Deployment/nginx 1%/49%, 19%/25% 1 100 2 49d
hpa-example Deployment/nginx 1%/49%, 24%/25% 1 100 2 49d
hpa-example Deployment/nginx 1%/49%, 16%/25% 1 100 2 49d
hpa-example Deployment/nginx 1%/49%, 20%/25% 1 100 2 49d
hpa-example Deployment/nginx 1%/49%, 18%/25% 1 100 2 49d
hpa-example Deployment/nginx 1%/49%, 23%/25% 1 100 2 49d
hpa-example Deployment/nginx 1%/49%, 22%/25% 1 100 2 49d
hpa-example Deployment/nginx 1%/49%, 28%/25% 1 100 2 49d
hpa-example Deployment/nginx 1%/49%, 26%/25% 1 100 2 49d
hpa-example Deployment/nginx 1%/49%, 24%/25% 1 100 2 49d
hpa-example Deployment/nginx 1%/49%, 0%/25% 1 100 2 49d
hpa-example Deployment/nginx 1%/49%, 0%/25% 1 100 2 49d
hpa-example Deployment/nginx 1%/49%, 0%/25% 1 100 1 49d
|
最后一条log显示已经POD数已经将为1了。
全文完。